CURRICULUM

Academic year 2019 – 2020
(Revised Scheme)

I & II Semester

COMMON TO ALL BRANCHES

RAMAIAH INSTITUTE OF TECHNOLOGY
(Autonomous Institute, Affiliated to VTU)
Bangalore – 560054.
About the Institute:
Ramaiah Institute of Technology (RIT) (formerly known as M.S.Ramaiah Institute of Technology) is a self-financing institution established in Bangalore in the year 1962 by the industrialist and philanthropist, Late Dr. M S Ramaiah. The institute is accredited with “A” grade by NAAC in 2014 and all engineering departments offering bachelor degree programs have been accredited by NBA. RIT is one of the few institutes with prescribed faculty student ratio and achieves excellent academic results. The institute was a participant of the Technical Education Quality Improvement Program (TEQIP), an initiative of the Government of India. All the departments have competent faculty, with 100% of them being postgraduates or doctorates. Some of the distinguished features of RIT are: State of the art laboratories, individual computing facility to all faculty members. All research departments are active with sponsored projects and more than 304 scholars are pursuing PhD. The Centre for Advanced Training and Continuing Education (CATCE), and Entrepreneurship Development Cell (EDC) have been set up on campus. RIT has a strong Placement and Training department with a committed team, a good Mentoring/Proctorial system, a fully equipped Sports department, large air-conditioned library with over 1,35,427 books with subscription to more than 300 International and National Journals. The Digital Library subscribes to several online e-journals like IEEE, JET etc. RIT is a member of DELNET, and AICTE INDEST Consortium. RIT has a modern auditorium, several hi-tech conference halls and all are air-conditioned with video conferencing facilities. It has excellent hostel facilities for boys and girls. RIT Alumni have distinguished themselves by occupying high positions in India and abroad and are in touch with the institute through an active Alumni Association. RIT obtained Academic Autonomy for all its UG and PG programs in the year 2007. As per the National Institutional Ranking Framework, MHRD, Government of India, Ramaiah Institute of Technology has achieved 64th rank in 2019 among the top 100 engineering colleges across India.
About the Departments:

DEPARTMENT OF MATHEMATICS:
The major focus of the department is to inculcate mathematical thinking in engineering students. For this, we teach core mathematics courses to students at undergraduate and postgraduate level as well as offer electives in mathematics. The department has a staff strength of 19 members. At present, there are 12 Ph.D. holders and all the other faculty members are pursuing their Ph.D. Current expertise of the faculty covers a broad range of areas including Fluid mechanics, Linear Algebra, Numerical Methods, Number Theory, Probability, Statistics and Queueing Theory. The department faculty have published many papers in national and international journals. In addition, the faculty members have also obtained extramural support to carry out research activities and projects sponsored by VTU, UGC, DST and TEQIP.

DEPARTMENT OF PHYSICS:
Physics department of RIT has well qualified and motivated faculty members who are actively engaged in teaching and research work. Majority of them have more than 15 years of teaching and 10 years of research experience. The Department has very good infrastructure, well equipped spacious laboratories, computational and research facilities. Four PhDs have been awarded from the R & D centre of Physics department till now. Five research projects with external funding to the tune of Rs. 50 lakhs from BRNS and VGST have been successfully completed. Two VGST funded projects are ongoing. In last one year, 24 research papers have been published in International peer reviewed journals with high impact factor. Total research publications in National / International Journals from 2008 to till date is 136.

DEPARTMENT OF CHEMISTRY:
The Chemistry Department is one of the oldest Departments (established in 1962) of Ramaiah Institute of Technology. The Department consists of nine well qualified and experienced faculty members, all are Doctorate holders. The Department also has five non-teaching staff. The TEQIP committee of MSRIT has sanctioned new equipments under TEQIP to upgrade the laboratory facilities and to establish research facilities in the Chemistry Department. The Department aims at preparing the students for careers in
all the fields of engineering aspects and also carry out basic and applied research work. The main activity of the department is to teach engineering chemistry theory and Laboratory courses to the under graduate engineering students of all disciplines. Department is also involved in teaching technical chemistry and Instrumental methods of analysis for III and IV semester BE chemical engineering students, along with respective laboratories. The Department is a recognized research centre by VTU. All faculty members are actively engaged in research work. Eighteen research scholars have registered for Ph. D. The faculty members of the Department have published about 30 research papers in reputed international journals in the current academic year. The department has conducted two FDP programs, and conducting zero-budget programs regularly for Research scholars.

DEPARTMENT OF HUMANITIES:
The Department of Humanities has six faculty members, with one awarded Ph.D. degree and two are pursuing. The department engages in teaching Professional Communication, Constitution of India, Kannada, Communication skills for BE/BArch students. Apart from this the department runs special classes/bridge courses in Communicative English to train NRI and rural students in English language usage. The faculty members engage in teaching-learning activities, research publications and conducting workshops for students to build social skills and broaden critical and creative competencies.

The department is also equipped with an English Language lab located in LHC block. First Year BE students take this course as a part of the subject ‘Professional Communication’. Building Vocabulary, grammar, Listening, Speaking skills, Power Point presentations and Group activities form integral part of the course.
VISION OF THE INSTITUTE
To be an Institution of International Eminence, renowned for imparting quality technical education, cutting edge research and innovation to meet global socio-economic needs

MISSION OF THE INSTITUTE
RIT shall meet the global socio-economic needs through

- Imparting quality technical education by nurturing a conducive learning environment through continuous improvement and customization

- Establishing research clusters in emerging areas in collaboration with globally reputed organizations

- Establishing innovative skills development, techno-entrepreneurial activities and consultancy for socio-economic needs

QUALITY POLICY
We at Ramaiah Institute of Technology strive to deliver comprehensive, continually enhanced, global quality technical and management education through an established Quality Management System complemented by the synergistic interaction of the stake holders concerned

VISION & MISSION OF THE DEPARTMENTS:

DEPARTMENT OF MATHEMATICS

Vision
To mould the students to have strong Mathematical and analytical skills to meet the challenges open to them

Mission
To provide the students with a strong Mathematical foundation through courses which cater to the needs of Industry, research and higher education.
DEPARTMENT OF CHEMISTRY

Vision
Department strives for development of curriculum viewing emerging trends in technology with a balanced approach towards Institute Industry interaction and academic excellence along with research in basic sciences.

Mission
Providing outstanding teaching and quality training in chemistry to all students at all levels and in all disciplines and also develop and maintain research programs of national and international relevance and serve the society through unique expertise and talent found in the department.

DEPARTMENT OF PHYSICS

Vision
To develop undergraduate courses of best academic standards comparable to universities of international repute and be a catalytic agent to help students to manifest their latent potential.

Mission
To provide the best training through teaching and research to enable the students to master the concepts in physics and apply successfully to real time problems and kindle their interest in cutting edge research areas.

DEPARTMENT OF HUMANITIES

Vision
The department of Humanities, RIT aspires to achieve excellence in teaching and training the young engineering students in the areas of humanities and social sciences through outcome based quality education and nurture them to emerge as professional leaders, lifelong learners and responsible citizens of global community.

Mission
The mission of the department is to offer courses that aim to strengthen the students’ creative and critical thinking, problem solving abilities, communication skills and broaden intellectual perspectives, to understand and deal with social realities through continuous learning experiences.
PROGRAM OUTCOMES (POs):

PO1: **Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6: **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: **Life-long learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
Faculty List:

- Department of Mathematics

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name</th>
<th>Qualification</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dr. N L Ramesh</td>
<td>M.Sc., Ph.D</td>
<td>Professor & Head I Year Coordinator</td>
</tr>
<tr>
<td>2.</td>
<td>Dr. S H C V Subbabhatta</td>
<td>M.Sc., M.Phil, Ph.D</td>
<td>Professor</td>
</tr>
<tr>
<td>3.</td>
<td>Dr. G Neeraja</td>
<td>M.Sc., Ph.D</td>
<td>Professor</td>
</tr>
<tr>
<td>4.</td>
<td>Dr. Monica Anand</td>
<td>M.Sc., Ph.D</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>5.</td>
<td>Dr. Dinesh P A</td>
<td>M.Sc., M.Sc(IT), M.Phil, Ph.D</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>6.</td>
<td>Dr. M V Govindaraju</td>
<td>M.Sc., Ph.D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>7.</td>
<td>Mr. Vijaya Kumar</td>
<td>M.Sc., (Ph. D)</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>8.</td>
<td>Dr. A Sreevallabha Reddy</td>
<td>M.Sc, Ph.D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>9.</td>
<td>Dr. R Suresh Babu</td>
<td>M.Sc., Ph. D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>10.</td>
<td>Dr. M S Basava Raj</td>
<td>M.Sc., Ph. D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>11.</td>
<td>Mr. B Azghar Pasha</td>
<td>M.Sc (Ph. D)</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>12.</td>
<td>Dr. Aruna A S</td>
<td>M.Sc Ph. D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>13.</td>
<td>Dr. Girinath Reddy M</td>
<td>M.Sc., Ph. D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>14.</td>
<td>Mrs. Uma M</td>
<td>M.Sc., (Ph. D)</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>15.</td>
<td>Mr. S Ram Prasad</td>
<td>M.Sc., (Ph. D)</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>16.</td>
<td>Mrs. Kavitha N</td>
<td>M.Sc., (Ph. D)</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>17.</td>
<td>Mrs. Sushma S</td>
<td>M.Sc., (Ph. D)</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>18.</td>
<td>Dr. Nancy Samuel</td>
<td>M.Sc, M.Phil, Ph.D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>19.</td>
<td>Dr. Kalyan Chakravarthy Y S</td>
<td>M.Sc., Ph. D</td>
<td>Assistant Professor</td>
</tr>
</tbody>
</table>
- **Department of Physics**

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name</th>
<th>Qualification</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dr. A. Jagannatha Reddy</td>
<td>M.Sc., M.Phil, Ph.D</td>
<td>Professor & Head</td>
</tr>
<tr>
<td>2.</td>
<td>Dr. Seema Agarwal</td>
<td>M.Sc., M.Phil, Ph.D</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>3.</td>
<td>Dr. Ravindra M Melavanki</td>
<td>M.Sc., Ph.D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>4.</td>
<td>Dr. K. L. Sandhya</td>
<td>M.Sc., Ph. D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>5.</td>
<td>Dr. Nagesh B V</td>
<td>M.Sc., Ph. D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>6.</td>
<td>Dr. G. N. Anil Kumar</td>
<td>M.Sc., Ph. D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>7.</td>
<td>Dr. B. Siddlingeshwar</td>
<td>M.Sc., Ph. D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>8.</td>
<td>Dr. S. Vaijayanthimala</td>
<td>M.Sc., Ph. D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>9.</td>
<td>Dr. Kalpana Sharma</td>
<td>M.Sc., Ph. D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>10.</td>
<td>Ms. Gopika C</td>
<td>M.Sc.</td>
<td>Teaching assistant</td>
</tr>
</tbody>
</table>

- **Department of Chemistry**

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name</th>
<th>Qualification</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dr. B. M. Nagabushana</td>
<td>M.Sc., Ph.D</td>
<td>Professor & Head</td>
</tr>
<tr>
<td>2.</td>
<td>Prof. B. S. Durgakeri</td>
<td>M.Sc</td>
<td>Visiting Professor</td>
</tr>
<tr>
<td>3.</td>
<td>Dr. Nagaraju Kottam</td>
<td>M.Sc., Ph.D</td>
<td>Associate Professor</td>
</tr>
<tr>
<td>4.</td>
<td>Dr. M. N. Manjunatha</td>
<td>M.Sc., Ph.D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>5.</td>
<td>Dr. P. Murali Krishna</td>
<td>M.Sc., Ph.D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>6.</td>
<td>Dr. Basappa C Yallur</td>
<td>M.Sc., Ph.D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>7.</td>
<td>Dr. Malathi Challa</td>
<td>M.Sc., Ph.D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>8.</td>
<td>Dr. Sharanabasappa Patil</td>
<td>M.Sc., Ph.D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>9.</td>
<td>Dr. R. Hari Krishna</td>
<td>M.Sc., Ph.D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>10.</td>
<td>Dr. Manjunath D. H</td>
<td>M.Sc., Ph.D</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>11.</td>
<td>Dr. Sharath D</td>
<td>M.Sc., Ph.D</td>
<td>Research Scientist</td>
</tr>
</tbody>
</table>
Department of Humanities

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Name</th>
<th>Qualification</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dr. Premila Swamy D</td>
<td>MA, UGC NET, Ph.D</td>
<td>Asst Professor & I/C HOD</td>
</tr>
<tr>
<td>2.</td>
<td>Mrs. Kanya Kumari S</td>
<td>MA, M.Phil</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>3.</td>
<td>Mr. Uday Kumar H M</td>
<td>MA, MBA, (Ph.D)</td>
<td>Assistant Professor</td>
</tr>
<tr>
<td>4.</td>
<td>Mrs. Sukanya N</td>
<td>MA</td>
<td>Part time lecturer</td>
</tr>
<tr>
<td>5.</td>
<td>Mrs. Nimmy V.S</td>
<td>L.L.M</td>
<td>Part time lecturer</td>
</tr>
<tr>
<td>6.</td>
<td>Mrs. Kiran Amar Magavi</td>
<td>MA, MHRM (PH.D)</td>
<td>Part time lecturer</td>
</tr>
</tbody>
</table>
Semester wise credit breakdown for B E Degree Curriculum
Batch 2019-23

<table>
<thead>
<tr>
<th>Course Category</th>
<th>Semester</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
<th>Fourth</th>
<th>Fifth</th>
<th>Sixth</th>
<th>Seventh</th>
<th>Eighth</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Sciences (BSC)</td>
<td></td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Engineering Sciences (ESC)</td>
<td></td>
<td>11</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Humanities, Social Sciences and Management (HSMC)</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Professional Courses - Core (PCC)</td>
<td></td>
<td>21</td>
<td>21</td>
<td>15</td>
<td>11</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>Professional Courses – Elective (PEC)</td>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Other Open Elective Courses (OEC)</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Project Work (PROJ), Internship (IN)</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Total Credits</td>
<td></td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>21</td>
<td>20</td>
<td>20</td>
<td>175</td>
</tr>
</tbody>
</table>
SCHEME OF TEACHING
I SEMESTER B.E.

Branches: CS, EC, IT, CH, ML and IS

<table>
<thead>
<tr>
<th>SL. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Department</th>
<th>Credits</th>
<th>Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA11</td>
<td>Engineering Mathematics – I</td>
<td>Mathematics</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>PY12</td>
<td>Engineering Physics</td>
<td>Physics</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>ME13</td>
<td>Elements of Mechanical Engineering</td>
<td>Mechanical Engineering</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>CV14</td>
<td>Basics of Civil Engineering and Mechanics</td>
<td>Civil Engineering</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>EC15</td>
<td>Basic Electronics</td>
<td>Electronics, Telecommunication, Instrumentation, Medical electronics</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>HS16*</td>
<td>Environmental Studies</td>
<td>Civil Engineering</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>HS17*</td>
<td>Kannada</td>
<td>Humanities</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>PYL18</td>
<td>Engineering Physics Laboratory</td>
<td>Physics</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>MEL19</td>
<td>Workshop Practice</td>
<td>Mechanical Engineering</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Total 19 3 2 20 29

* Non Credit Mandatory Course
L – Lecture (one hour)
T - Tutorial (Two hours)
P - Practical (Two hours)
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Department</th>
<th>Credits</th>
<th>Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1.</td>
<td>MA21</td>
<td>Engineering Mathematics – II</td>
<td>Mathematics</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>CY22</td>
<td>Engineering Chemistry</td>
<td>Chemistry</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>HS23*</td>
<td>Constitution of India</td>
<td>Humanities</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>HS24</td>
<td>Professional Communication</td>
<td>Humanities</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>EE25</td>
<td>Basic Electrical Engineering</td>
<td>Electrical & Electronics</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>CS26</td>
<td>Fundamentals of Computing</td>
<td>Computer Science / Information Science</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>CYL27</td>
<td>Engineering Chemistry Laboratory</td>
<td>Chemistry</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td>CSL28</td>
<td>Fundamentals of Computing & C Programming Laboratory</td>
<td>Computer Science / Information Science</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>ME29</td>
<td>Computer Aided Engineering Drawing</td>
<td>Mechanical Engineering</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10.</td>
<td>AL21</td>
<td>Engineering Design</td>
<td>Respective Departments</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

* Non Credit Mandatory Course
L – Lecture (one hour)
T - Tutorial (Two hours)
P - Practical (Two hours)

Note:

AICTE Activity Points to be earned by students admitted to BE program (For more details refer to Chapter 6, AICTE, Activity Point Program, Model Internship Guidelines):

Every regular student, who is admitted to the 4 year degree program, is required to earn 100 activity points in addition to the total credits earned for the program. Students entering 4 years Degree Program through lateral entry are required to earn 75 activity points in addition to the total credits earned for the program. The activity points earned by the student shall be reflected on the students 8th Semester grade card. The activities to earn the points can be spread over the duration of the course. However, minimum prescribed duration should be fulfilled. Activity Points (non-credit) have no effect on SGPA/CGPA and shall not be considered for vertical progression.

In case student fail to earn the prescribed activity points, Eight semester Grade Card shall be issued only after earning the required activity Points. Students shall be eligible for the award of degree only after the release of the Eight Semester grade card.
SCHEME OF TEACHING
I SEMESTER B.E.

Branches: ME, IM, TC, CV, EE and BT

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Department</th>
<th>Credits</th>
<th>Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>MA11</td>
<td>Engineering Mathematics – I</td>
<td>Mathematics</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>CY12</td>
<td>Engineering Chemistry</td>
<td>Chemistry</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>HS13*</td>
<td>Constitution of India</td>
<td>Humanities</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>HS14</td>
<td>Professional Communication</td>
<td>Humanities</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5.</td>
<td>EE15</td>
<td>Basic Electrical Engineering</td>
<td>Electrical & Electronics</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>CS16</td>
<td>Fundamentals of Computing</td>
<td>Computer Science / Information Science</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7.</td>
<td>CYL17</td>
<td>Engineering Chemistry Laboratory</td>
<td>Chemistry</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>CSL18</td>
<td>Fundamentals of Computing & C Programming Laboratory</td>
<td>Computer Science / Information Science</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>ME19</td>
<td>Computer Aided Engineering Drawing</td>
<td>Mechanical Engineering</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>10.</td>
<td>AL11</td>
<td>Engineering Design</td>
<td>Respective Departments</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Total 14 4 4 20 30

* Non Credit Mandatory Course L – Lecture (one hour) T - Tutorial (Two hours) P - Practical (Two hours)
II SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Teaching Department</th>
<th>Credits</th>
<th>Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1.</td>
<td>MA21</td>
<td>Engineering Mathematics – II</td>
<td>Mathematics</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>PY22</td>
<td>Engineering Physics</td>
<td>Physics</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>ME23</td>
<td>Elements of Mechanical Engineering</td>
<td>Mechanical Engineering</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>CV24</td>
<td>Basics of Civil Engineering and Mechanics</td>
<td>Civil Engineering</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>EC25</td>
<td>Basic Electronics</td>
<td>Electronics, Telecommunication, Instrumentation, Medical electronics</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>6.</td>
<td>HS26*</td>
<td>Environmental Studies</td>
<td>Civil Engineering</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>HS27*</td>
<td>Kannada</td>
<td>Humanities</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td>PYL28</td>
<td>Engineering Physics Laboratory</td>
<td>Physics</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9.</td>
<td>MEL29</td>
<td>Workshop Practice</td>
<td>Mechanical Engineering</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>19</td>
</tr>
</tbody>
</table>

* Non Credit Mandatory Course
L – Lecture (one hour)
T - Tutorial (Two hours)
P - Practical (Two hours)

Note:

AICTE Activity Points to be earned by students admitted to BE program (For more details refer to Chapter 6, AICTE, Activity Point Program, Model Internship Guidelines):

Every regular student, who is admitted to the 4 year degree program, is required to earn 100 activity points in addition to the total credits earned for the program. Students entering 4 years Degree Program through lateral entry are required to earn 75 activity points in addition to the total credits earned for the program. The activity points earned by the student shall be reflected on the students 8th Semester grade card. The activities to earn the points can be spread over the duration of the course. However, minimum prescribed duration should be fulfilled. Activity Points (non-credit) have no effect on SGPA/CGPA and shall not be considered for vertical progression. Incase student fail to earn the prescribed activity points, Eight semester Grade Card shall be issued only after earning the required activity Points. Students shall be eligible for the award of degree only after the release of the Eight Semester grade card.
Course Content:

Unit-I

Differential Calculus - I: Polar curves, Angle between the radius vector and the tangent, Angle between the curves, Length of perpendicular from pole to the tangent, Pedal equations.
Partial Differentiation: Partial derivatives, Euler’s theorem, Total differential coefficient, Differentiation of composite and implicit functions, Jacobians and properties.

Unit-II

Integral Calculus - I: Reduction formulae for $\sin^n x$, $\cos^n x$, $\sin^m x \cos^n x$, Evaluation of these integrals with standard limits, Tracing of curves (both Cartesian and polar).
Application of integration: length of arc of a curve, plane areas, volumes and surface area of revolution.

Unit-III

Vector differentiation: Vector functions of a single variable, Derivative of a vector function, Geometrical interpretation, Velocity and acceleration.
Scalar and vector fields, Gradient of a scalar field, Directional derivative, Divergence of a vector field, Solenoidal vector, Curl of a vector field, Irrotational vector, Laplacian operator, Vector identities (Standard vector identities).

Unit-IV

Integral Calculus - II: Multiple integrals- evaluation of double and triple integrals, Change of order of integration, Change of variables. Applications of double and triple integrals to find areas and volumes.

Unit-V

Vector integration: Line integrals, surface integrals and volume integrals. Green’s theorem (with proof) and its applications, Stokes’ theorem (without proof) and its applications, Gauss divergence theorem (without proof) and its applications.
Text Books:

Reference Books:

Course Outcomes (COs):

At the end of the course the student will be able to

1. Solve problems related to polar curves, composite functions and Jacobians. (PO-1, PO-2)
2. Trace a curve using its guiding properties and use integration to find its perimeter, surface area and volume. (PO-1, PO-2)
3. Apply vector differentiation to identify solenoidal and irrotational vectors. (PO-1, PO-2)
4. Evaluate multiple integrals and use them to find areas and volumes. (PO-1, PO-2)
5. Exhibit the interdependence of line, surface and volume integrals using integral theorems. (PO-1, PO-2)
ENGINEERING PHYSICS

Course Code: PY12/22
Pre – requisites: Nil
Course Coordinator: Dr. Kalpana Sharma

Credits: 3:1:0
Contact Hours: 42L + 14T

Course Content:

Unit-I

Elasticity and Vibrations:
Elaticity—Introduction --Hooke’s law — Poisson’s ratio— Derivations for Y, K, n in terms of linear and lateral strains-- Relationship between Y, k, n and σ — Torsion of a cylinder and determination of couple per unit twist—Torsion pendulum— Determination of rigidity modulus using torsion pendulum --Bending moment of a beam (qualitative) – Cantilever loaded at free end.
Vibrations -- Introduction to vibrations—Analysis of Free and damped vibrations – under, over and critical damping—logarithmic decrement and quality factor—Forced vibrations and Resonance —LCR circuits and electrical resonance.

Unit-II

Concepts of Modern Physics and Quantum Mechanics:
Particle nature of electromagnetic radiation—Discussion of Blackbody spectrum—Wien’s law, Rayleigh Jeans law , Stefan -Boltzman law and Planck’s law (qualitative)—Deduction of Wien’s law and Rayleigh Jeans law from Planck’s law – Photoelectric effect (qualitative) -Compton effect.
Wave nature of particles—de-Broglie waves—Davisson – Germer experiment - Phase and group velocities—Expression for group velocity from superposition principle—Equivalence of group velocity to velocity of particle--Relationships between phase velocity and group velocity in dispersive and non dispersive media— Heisenberg’s uncertainty relationships-- Applications (Non confinement of electrons in atomic nucleus)-- characteristics of a well behaved wave function—Born approximation and normalization of the wave function—Setting up of one dimensional time independent Schrodinger’s wave equation from classical wave equation—Eigen values and energy of a particle in an infinite one dimensional potential well.

Unit-III

Electrical conduction in solids:
Metals— Classical free electron theory of metals—Drawbacks of classical free electron theory--Quantum free electron theory— Density of energy states in a metal -- - Fermi energy at 0 K—Effect of temperature on Fermi-Dirac Distribution function- Effect of temperature on f(E), n(E) vs E and g(E) vs E graphs. Merits of quantum free electron theory.
Semiconductors: Formation of energy bands in solids (qualitative)—Density of energy states in conduction and valence bands of a semiconductor—Thermal equilibrium concentration of electrons in conduction band—Intrinsic carrier concentration—Hall effect

Unit-IV

Electromagnetic theory (Maxwell’s equations):
Fundamentals of vector calculus: Divergence and Curl of Electric field and Magnetic field, Gauss divergence theorem, surface and volume integrals, Stokes’ theorem, Gauss flux theorem in electrostatics and magnetism, Ampere’s law, Biot-Savart’s law and Faraday’s law in vector notation, Continuity equation, Displacement current(I), Maxwell-Ampere’s law, Maxwell’s equations, Plane Electromagnetic waves in vacuum, Transverse nature of electromagnetic waves, Polarization of EM waves

Unit-V

Lasers and Optical fibers:
Lasers--Interaction of radiation with matter—Induced Absorption—spontaneous emission and stimulated emission--Expression for energy density of radiation in terms of Einstein coefficients at thermal equilibrium—Requisites of a laser system-- Three and four level lasers--Principle and operation of He-Ne and semiconductor Lasers

Optical Fibers--Propagation mechanisms in optical fibers, Angle of acceptance and Numerical aperture –Types of optical fibers—Step index and graded index fibers--Intermodal dispersion—Attenuation in optical fibers

Text Books:

Reference Books:

4. S.P. Basavaraju - Engineering Physics, Subhas stores, 2014
5. The Feynman Lectures on Physics - Addison-Wesley
Course Outcomes (COs):
At the end of the course the student will be able to

1. Analyze elastic modulii in different cases and enumerate free, damped and forced vibrations. (PO-1)
2. Distinguish between phase and group velocities; solve Schrödinger’s time independent wave equation for the case of infinite potential well. (PO-1)
3. Apply the quantum theory to understand the electrical conductivity of metals and calculate carrier concentration in metals and semiconductors. (PO-1)
4. Explain fundamental laws governing electromagnetic fields and justify the concepts of electromagnetic waves. (PO-1)
5. Enumerate the construction and working of simple laser systems, understand the propagation mechanism of EM waves in optical fibers. (PO-1)
Course Content:

Unit-I

Steam boilers: Formation of steam at constant pressure, Conditions of steam, Properties of steam with simple numerical problems. Boilers, Boiler mountings, Accessories and applications;
Steam turbine: Prime movers, Impulse and Reaction turbine, Definitions of compounding, methods of compounding,
Gas turbine: Classification, Working principles and operations, Open and closed cycle gas turbines;
Water turbine: Classification, Working principle of Pelton, Francis and Kaplan turbines, Demonstration of boilers and prime movers.

Unit-II

Internal combustion engines: Classification, Parts of an I.C. engine, 2 stroke, 4 stroke, petrol and diesel engines, Simple numerical problems on indicated power, Indicated thermal efficiency, Brake power, Brake thermal efficiency, Mechanical efficiency, Specific fuel consumption, Demonstration of I.C. engine.
Refrigeration and air conditioning: Classification of refrigeration, working principles of vapor compression and vapor absorption refrigerator, Properties of refrigerant, Working principle of window air conditioner.

Unit-III

Metal removal processes: Machine tools, specifications of lathe, parts of engine lathe, Working principle, Lathe operations; Plain turning, Facing, Parting, Grooving, Knurling, Taper turning and Thread cutting. Drilling machine: Working principles of bench and radial drilling machines, Drilling operations; Drilling, Reamers, Boring, Counter sinking, Counter boring, Spot facing. Milling machines: Methods of cutting, Milling machines; Horizontal and Vertical Milling operations; Plain, Angular, Slot, Form, Straddle, Gang, Face and End milling. Demonstration of the above machine tools.

Unit-IV

Computer numerical control machines: Numerical Control, Computer Numerical Control and Direct Numerical Control.
Introduction to Composites: Role of matrix and reinforcements, MMCs, PMCs and CMCs, Advantages, limitations and applications.
Unit-V

Power transmission: Belt drives; Types, Velocity ratio, Slip, Length of belts for open belt and cross belt drive, Angle of lap, ratio of belt tensions, Power transmitted, Creep in belt drive. Pulleys; Stepped, Tight and loose, Idler, Simple numerical problems. V-belt drive, Gear drives: Classification of gears, Spur gear nomenclature, Velocity ratio, Pinion and rake, Helical gears, Bevel gears and Worm gears. Gear train: Train values, Classification of gear trains and their uses, Simple numerical problems on Simple, Compound and Reverted gear trains.

Text Books:

Reference Books:

Course Outcomes (COs):

At the end of the course, students will be able to:

1. Recognize various conditions of steam, its formation using boilers, prime movers for various power plants and other applications. (PO-1, PO-2, PO-7)
2. Illustrate the construction and working of I.C. engines, refrigeration and air conditioning systems required for transportation, domestic and industrial purpose. (PO-1, PO-2, PO-7)
3. Identify various machining process, joining and other manufacturing techniques used for the production of various components. (PO-1, PO-2)
4. Differentiate the power transmission systems used in various applications. (PO-1, PO-2)
5. Identify the significance of mechanical engineering concepts in various fields of engineering applications. (PO-1, PO-2, PO-4, PO-12)
Course Content:

Unit-I

Introduction to Civil Engineering-
Scope of major fields of civil engineering-Surveying, Geotechnical Engineering, Structural Engineering, Hydraulics & Water Resources, Transportation Engineering, Environmental Engineering.
Infrastructure: Types of infrastructure, Role of Civil Engineer in the Infrastructural development, Effect of the infrastructural facilities on socio-economic development of a country.
Roads: Types of Roads and their functions, Dams: Different types of Dams based on Material, Structural behaviour and functionality with simple sketches.
Materials of Construction: Properties & applications of PCC, RCC, PSC and steel.

Unit-II

Unit-III

Equilibrium of concurrent force system: Equilibrium of coplanar concurrent system of forces, free body diagram, Conditions of equilibrium. Definition of Equilibrant, Numerical problems on equilibrium of coplanar concurrent force systems.
Equilibrium of non-concurrent force system: Equilibrium of non-concurrent system of forces, Types of loads, supports for beam, statically determinate and indeterminate beams, Numerical problems on statically determinate beams subjected to concentrated load, Uniformly distributed load, Uniformly Varying Load and their combinations Problems on equilibrium of different force systems.
Unit-IV

Unit-V

Friction: Definition of Friction and its applications, angle of friction, angle of repose, coefficient of friction. Types of Friction, laws of static friction, Description and application of friction on blocks on horizontal and inclined planes.

Kinematics

Text Books:

Reference Books:
Course Outcomes (COs):

At the end of the course, students will be able to:

1. Describe various fields of Civil Engineering and summarize the construction materials. (PO-1, PO-10)
2. Analyze coplanar force systems. (PO-1, PO-2, PO-3)
3. Determine the equilibrium of coplanar force systems and statically determinate beams. (PO-1, PO-2, PO-3)
4. Locate the centroid and compute the moment of inertia of plane figures. (PO-1, PO-2, PO-3)
5. Apply friction laws to analyze the problems on friction and apply the relationship between motions of bodies. (PO-1, PO-2, PO-3)
Course Content:

Unit-I

Semiconductor Diodes and Applications: P-N junction diode, DC equivalent circuits, Half-Wave Rectifier, Two-Diode Full Wave Rectifier, Bridge Rectifier, Capacitor filter circuit, Zener diode voltage regulators (with no load and loaded regulator), 78xx based fixed IC voltage regulator

Bipolar Junction Transistors: BJT Operation, Common Emitter Characteristics, (Numerical examples as applicable)

Unit-II

BJT Biasing: DC load line and bias point, Voltage divider bias (Numerical examples as applicable)

AC analysis of BJT Circuits: Common emitter circuit analysis (Qualitative analysis only)

Signal Generators: Conditions for oscillations, BJT phase shift oscillator, BJT Colpitt’s and Hartley oscillators (Qualitative analysis only)

Unit-III

Field Effect Transistors: Junction Field Effect Transistors (JFET), JFET characteristics and parameters, Metal Oxide Semiconductor Field Effect Transistors (MOSFETs): Depletion and Enhancement MOSFET, Complementary Metal Oxide Semiconductor (CMOS)

Op-Amps: Ideal Op-Amp, Basic Op-amp circuits: Inverting amplifier, Non Inverting amplifier, Voltage Follower, Summer, Subtractor, Integrator, Differentiator. (Numerical examples as applicable)

Unit-IV

Digital Electronics: Number Systems: Decimal, Binary and Hexadecimal number systems, Converting from Decimal to Binary/Hexadecimal, Converting Binary to Decimal/Hexadecimal, Converting Hexadecimal to Binary/Decimal, Complement of Binary Numbers.

Boolean Algebra: Theorems, De Morgan’s theorem. Digital Circuits: Logic gates, NOT, AND, OR, XOR, NAND, NOR and X-NOR gates, algebraic simplification, NAND and NOR implementation: NAND implementation, NOR implementation, Half adder, Full adder.

Flip Flops: Introduction to Flip-Flops, NAND gate latch/ NOR gate latch, RS Flip-Flop.
Unit-V

Applications: Block diagram of analog and digital communication systems, Block diagram of a digital TV system, Block diagram of Satellite communication, Principle of operations of Mobile phone.

Text Books:

Reference Books:

Course Outcomes (COs):
At the end of the course, students will be able to:
1. Describe semiconductor devices and its applications. (PO-1, PO-2)
2. Analyze the various circuits of BJT. (PO-1, PO-2)
3. Employ op-amp in various circuits. (PO-1, PO-2)
4. Analyze digital circuits. (PO-1, PO-2)
5. Appreciate the importance of transducers and communication systems. (PO-1, PO-2)
Course Content:

Unit-I
Environment, Ecology and Biodiversity
Definition, scope and importance of Environmental Studies. Multidisciplinary nature of Environmental Studies. The concept of an ecosystem, biotic and abiotic components of an ecosystem and their interaction. Food chain and food web. Energy flow and material cycling in ecosystem and balanced eco system. Biodiversity, ecological values of biodiversity and threats to biodiversity. Concept of sustainable development, objectives and applications of sustainable development.

Unit-II
Natural resources
Forest resources-ecological importance of forests, deforestation, causes of deforestation and remedial measures. Water resources & global water resources distribution. Mineral resources and environmental impacts of mining. Food resources-effects of modern agriculture, fertilizer-pesticide problems, water logging and salinity. Land resources- landslides, soil erosion and desertification.

Unit-III
Energy sources

Unit-IV
Environmental pollution
Definition, causes, effects and control measures of water pollution, air pollution and soil/land pollution. Management of municipal solid waste & treatment methods for municipal solid waste. Dams: benefits and problems. Effects of housing and infrastructure development on environment.
Unit-V

Environmental protection

Text Books:

Reference Books:

Course Outcomes (COs):
At the end of the course, students will be able to:
1. Describe the importance of environmental studies, sustainable development and biodiversity. (PO-1, PO-7)
2. Discuss the importance of natural resources, environmental impacts on these resources and suggest remedial measures. (PO-1, PO-7)
3. Distinguish different types of energy sources and identify alternative energy for sustainable development. (PO-1, PO-7)
4. Identify the causes, effects and control measures of environmental pollution. (PO-1, PO-7)
5. Outline the current environmental issues and the role of agencies for environmental protection. (PO-1, PO-7)
KANNADA MANASU

Course Code: HS17/27 (M)
Credits: 0:0:0
Pre – requisites: Nil
Contact Hours: 28L
Course Coordinator: Mrs. Kavya Kumari. S

Course Content:

1.।

2.।

3.।

4.।

5.।

6.।

7.।

8.।

9.।

10.।

11.।

12.।

13.।

14.।

15.।

16.।

17.।

18.।

19.।

20.।

21.।

22.।

Course Outcome (COs):

1.।

2.।

3.।

4.।

5.।

6.।

7.।

8.।

9.।

10.।

11.।

12.।

13.।

14.।

15.।

16.।

17.।

18.।

19.।

20.।

21.।

22.।

23.।

24.।

25.।

26.।

27.।

28.।

29.।

30.
KANNADA KALI

Course Code: HS17/27 (K)
Credits: 0:0:0
Pre – requisites: Nil
Contact Hours: 28L
Course Coordinator: Mrs. Kavya Kumari. S

Course Content:

Unit-I

Lesson 1: Introducing each other- personal pronouns, interrogative words
Lesson 2: Introducing each other - possessive forms, Noun and verb.

Unit-II

Lesson 3: About Ramayana. Adjectives, usage of tenses, formation of words and sentences.
Lesson 4: Enquiring about college. Qualitative and quantitative adjectives.

Unit-III

Lesson 5: Enquiring about room. Preposition,
Lesson 6: Vegetable Market- Dative case, Kannada alphabets and basic numerals.

Unit-IV

Lesson 7: About medical college - Ordinal numerals, plural markers.
Lesson 8: In a cloth shop - Color adjectives, vocabulary, Translation

Unit-V

Lesson 9: Plan to go for picnic- Imperative and permissive, Names of the days, Kannada script writing.
Lesson 10: Enquiring about friends and family- verb, Corresponding negation, dialogue and paragraph writing.

Text Book:

Reference Book:
1. Kannada kali, Prasaranga kannada University, Hampi. 2007

Course Outcomes (COs):
At the end of the course, students will be able to
1. Develop vocabulary.(PO-10)
2. Enrich language skills for various purposes. (PO-6, PO-12)
Course Content:

Engineering Physics Lab experiments

1. General Instructions and Introduction to Error Analysis.
2. Plotting of forward and reverse bias characteristics of a Zener Diode and determination of breakdown voltage.
3. Determination of input, output and mutual characteristics of a transistor and calculation of α and β values.
4. Measurement of capacitance and dielectric constant of a capacitor by charging and discharging it through a resistor.
5. Calculation of Planck’s constant using LEDs.
6. Verification of Stefan’s law.
7. Identification of different components (L,C or R) of a Black Box and calculation of their values through frequency response curves.
8. Determination of Moment of inertia of an irregular body and calculation of rigidity modulus of the material of the suspension wire using torsional oscillations.
9. Measurement of Young’s Modulus of the material of the single cantilever beam.
12. Determination of Fermi energy of a metal.
15. Calculation of thickness of given paper strip by the method of interference fringes.(Air wedge)
17. Determination of Hall coefficient and concentration of charge carriers of the semiconductor.
18. Simulation of electrical experiments using Pspice
• Students are required to perform 12 prescribed experiments (from 2 to 18) in the above list. Cyclic order will be followed.

• Experiment 18 is compulsory for all students.

Reference Books:
1. Laboratory manual prepared by the Physics department, RIT, Bangalore.

Course Outcomes (COs):
At the end of course, students will be able to,

1. Determine elastic constants of material using torsion pendulum and cantilever. (PO-1, PO-4)
2. Apply the concepts of interference and diffraction of light to determine thickness of thin films and wavelength of light. (PO-1, PO-4)
3. Construct and analyze simple AC and DC circuits to determine electrical parameters, familiarity with the concepts of modern Physics. (PO-1, PO-4, PO-5)
WORKSHOP PRACTICE

Course Code: MEL19/29
Pre – requisites: Nil
Contact Hours: 14T+14P
Course Coordinator: Dr. Arunkumar P C

Course Content:

1. **Fitting Shop**: Fitting of any three common joints. (3 classes)
2. **Welding Shop**: Welding of any three common joints. (3 classes including sl. No.4)
3. **Sheet Metal Work**: Sheet-metal models – Rectangular Prism closed at one end, Rectangular 90° tray & Funnel.
4. **Machine Shop**: Two lathe models involving step turning, taper turning and knurling operations. (2 classes)
5. Demonstration of Radial drilling machine operations and typical milling operations.
6. Practice of drilling using lathe and drilling machine.
7. Practice of use of Power Tools for common machining operations. (2 classes including 5 & 6)

Text book:

Reference Books:

Course Outcomes (COs):
At the end of the course, students will be able to:
1. Remember the role of basic workshop practices in the functioning of various daily life appliances. (PO-1, PO-2, PO-3, PO-5, PO-12)
2. Understand the significant details of workshop tools, machines and simple fabrication processes. (PO-1, PO-2, PO-3, PO-12)
3. Apply the knowledge of workshop practice methods to demonstrate utilitarian skills. (PO-1, PO-3, PO-5, PO-12).
Course Content:

Unit-I

Differential Calculus - II: Derivatives of arc length, Curvature, Radius of curvature. Taylor’s series and Maclaurin’s series (without proof), Taylor’s and Maclaurin’s series for functions of two variables (without proof), Maxima and minima of functions of two variables, Lagrange’s method of undetermined multipliers.

Unit-II

Applications of first order and first degree differential equations: Applications of first order and first degree ODEs to solve LCR circuits, Newton’s law of cooling and orthogonal trajectories.

Linear differential equations of higher Order-I: Linear differential equations of higher order with constant coefficients.

Unit-III

Linear differential equations of higher order-II: Cauchy’s and Legendre’s linear differential equations, Method of variation of parameters – Engineering applications.

Unit-IV

Beta and Gamma Function: Definition, Relation between Beta and Gamma function.

Laplace transforms I: Definition, Transforms of elementary functions, Properties of Laplace transforms, Existence conditions, Transforms of derivatives, integrals, multiplication by t^n, division by t, Evaluation of integrals by Laplace transforms, Unit–step function, Unit–impulse function.

Unit-V

Laplace transforms II: Laplace transforms of periodic function, Inverse transforms, Convolution theorem, Solution of linear differential equations and simultaneous linear differential equations using Laplace transforms, Engineering applications.
Text Books:

Reference Books:

Course Outcomes (COs):
At the end of the course the student will be able to

1. Find the arc length, radius of curvature, extreme values, and power series expansion of a function. (PO-1, PO-2)
2. Solve first and higher order linear differential equations with constant coefficients. (PO-1, PO-2)
3. Solve higher order linear differential equations with variable coefficients and PDE’s. (PO-1, PO-2)
4. Determine Laplace transform of standard functions. (PO-1, PO-2)
5. Use the concept of Laplace transforms to solve initial and boundary value problems. (PO-1, PO-2)
ENGINEERING CHEMISTRY

Course Code: CY12/22
Pre – requisites: Nil
Course Coordinator: Dr. B. M. Nagabhushana & Dr. Nagaraju Kottam

Credits: 3:0:0
Contact Hours: 42L

Course Content:

Unit-I

Batteries (BT): Basic concepts. Mechanism of battery operation, battery characteristics. Classification of batteries – Primary, secondary and reserve batteries. Modern batteries - construction, working and applications Nickel-metal hydride, Li-MnO₂ (Lithium batteries) and Al-air batteries.

Unit-II

Unit-III

Unit-IV

Unit-V

Text Books:

Reference Books:

Course outcomes (COs): on completion of this course students will be able to:

1. Apply the knowledge of electrochemistry to improve the efficiency of batteries. (PO-1, PO-2, PO-7)
2. Interpret the reasons of corrosion, monitor and control by using the proper techniques. (PO-1, PO-2, PO-7)
3. Apply different conventional & renewable sources of energy to generate power. Have concept on rearing high octane quality fuels. (PO-1, PO-2, PO-7)
4. Analyze the water samples and will have the knowledge to obtained potable water using different techniques and recycling of water. (PO-1, PO-2, PO-7)
5. Apply the knowledge of advanced polymers, composites, conducting polymers and liquid crystals for different applications. (PO-1, PO-2, PO-7)
CONSTITUTION OF INDIA

Course Code: HSS13/23
Credits: 0:0:0
Pre – requisites: Nil
Contact Hours: 28L
Course Coordinator: Dr. Premila Swamy & Mrs. Kanya Kumari

Course Content:

Unit-I

Unit-II

Unit-III
The Union Executive- President & Vice President, Prime Minister& Council of Ministers, Union Legislature (Parliament) - composition & functions. The Union Judiciary- Supreme Court of India.
State executive - Governor, Chief Minister & council of ministers. State legislature and State judiciary.

Unit-IV

Unit-V

Text Books:
Reference Books:

Course outcomes (COs):

At the end of the course, students will be able to

1. Identify the fundamental principles of Indian constitution. (PO-12)
2. Examine various provisions of Directive Principles of state policies & fundamental duties. (PO-6, PO-12)
3. Understand the powers of executive, legislature and judicial system. (PO-12)
4. Identify the role of election commission & local self government. (PO-12)
5. Understand about basic Human rights in India. (PO-6, PO-12)
PROFESSIONAL COMMUNICATION

Course Code: HSS14/24
Pre – requisites: Nil
Course Coordinator: Dr. Premila Swamy. D

| Credits: 2:0:0 | Contact Hours: 28L |

Course Content:

Unit-I
Fundamentals of Communication

Unit-II
Listening and Speaking skills
Definition of Listening, Listening Vs Hearing, Types of Listening, Barriers to listening, Significance of listening, Improvising Listening Skills, Effective speaking, Presentation Strategies.

Unit-III
Grammar
Words commonly confused, Parts of speech, Usage of Tenses, Usage of Phrasal Verbs and Idioms, Identifying errors in sentences, Vocabulary.

Unit-IV
Reading and Writing Skills
Reading techniques-Skimming, Scanning, Intensive Reading, Extensive Reading, Reading different kinds of Texts, Effective Writing Skills, Paragraph writing, Expansion of ideas.

Unit-V
Professional Writing
Professional writing strategies, Letter writing, Drafting job Application letter and Resume’s, Email writing, Report writing.

Text books:

Reference books:

Course outcomes (COs):

At the end of the course, students will be able to

1. Understand the basic concepts in Communication. (PO-9, PO-10, PO-12)
2. Inculcate Listening & Speaking Skills accurately. (PO-10, PO-12)
3. Develop grammatical accuracy and Vocabulary. (PO-10, PO-12)
4. Apply Reading and Writing strategies. (PO-10, PO-12)
5. Apply Professional writing skills. (PO-9, PO-10, PO-12)
Course Content:

Unit-I
Introduction to Electrical Power
Introduction to generation, transmission and distribution of electrical power. AC and DC power. Concept of grid and need for interconnection of grids. Conditions for grid connection. Integration of renewable energy sources to grid - conditions and benefits. Types of loads. Concept of power and energy. Definition of Power Factor. Tariff structure for electrical energy consumption.

Unit - II
Analysis of DC and AC Circuits

Unit -III
Introduction to Electrical Machines-I

Unit -IV
Introduction to Electrical Machines-II
Advantages of three phase circuits. Relation between line and phase quantities in STAR and DELTA connected systems. Construction and working principle of Synchronous Generator, EMF equation, Numericals. Types of Induction motors and applications. Construction and working principle of three phase Induction Motor (Rotating magnetic field), slip, slip speed and frequency of rotor EMF, Numericals.
Unit-V

Special Electrical Machines and Its Applications:
Construction and working principle of BLDC Motor and Stepper Motor and their applications.

Protection and Safety of Electrical Systems:
Introduction to domestic wiring, Fuse, MCB, ELCB and Relay.
Necessity of earthing, difference between earthing and grounding and types of grounding.
Electric shocks, hazards and safety precautions.

Text Books:

Reference Books:
3. EPRI Handbook.

Course Outcomes (COs):
At the end of the course, students will be able to:
1. Understand different types of energy sources and the concepts of generation, transmission and distribution of electrical power. (PO-1, PO-6)
2. Solve problems in DC and AC circuits. (PO-1)
3. Understand the construction and working of DC Machines. (PO-1)
4. Understand the construction and working of AC Machines. (PO-1)
5. Recognize the importance of protection and safety of electrical systems. (PO-6, PO-8)
Course Content:

Unit-I

Unit-II

Unit-III

Unit-IV
Unit-V

Pointers: Introduction, Understanding Pointers, Accessing the Address of a Variable, Declaring Pointer Variables, Initialization of Pointer Variables, Accessing a variable through its pointer, Pointer Expressions, Pointers and Arrays, Pointers and Character Strings, Pointers as Function Arguments.

File: Introduction to files, Using files in C: Declaring a File Pointer Variables, Opening a File, Closing a File Using fclose(). Read data from files: fscanf(), fgets(), fgetc() and fread(). Writing Data to Files: fprintf(), fputs(), fputc() and fwrite().

Text Books:

Reference Books:

Course Outcomes (COs):
At the end of the course, the students will be able to
1. Identify basic elements of computing systems to solve simple real world engineering problems. (PO-1, PO-2)
2. Illustrate the use of control structures, decision making and looping statements. (PO-1, PO-2)
3. Implement the concepts and techniques related to arrays and matrices. (PO-1, PO-2)
4. Construct a programming solutions using user defined functions and structures. (PO-1, PO-2)
5. Illustrate the concepts of pointers and files. (PO-1, PO-2)

Note: The topics discussed in tutorials of the Course CSL 18/CSL 28 Fundamentals of Computing and C Programming Laboratory will be a part of CIE and SEE assessment of this Course.
ENGINEERING CHEMISTRY LABORATORY

Course Code: CYL17/27
Pre–requisites: Nil
Course Coordinator: Dr. B. M. Nagabhushana & Dr. Nagaraju Kottam

Course Content:

1. Assessment of suitability of drinking and industrial water by estimation of hardness.
2. Determination of COD of waste water sample.
3. Determination of amount of iron present in rust solution.
4. Determination of % Cu in brass by iodometric method.
5. Colorimetric estimation of metal ions (Copper) in effluent water.
6. Determination of amount of chloride present in water sample of by Argentometric method
7. Estimation of sodium present in water sample by Flamephotometry.
8. Determination of amount of HCl and CH₃COOH present in a mixture by conductometry.
9. Estimation of FAS present in the given solution potentiometrically
10. Determination of pKa value of the given weak acid.
11. Synthesis of nanomaterials by combustion method (Demo)
12. Determination of single electrode potential using secondary reference electrode - Verification of Nernst equation. – (Demo)

Reference books:

Course outcomes (COs):

At the end of the course, students will be able to:

1. Analyze handling apparatus in chemical laboratories for analysis of various materials. (PO-1, PO-2, PO-7)
2. Analyze the suitability of water for domestic and industrial consumption. (PO-1, PO-2, PO-7)
3. Evaluate the content and composition of new materials encountered in engineering applications. (PO-1, PO-2, PO-7)
4. Enumerate various instruments in professional and research activities. (PO-1, PO-2, PO-7)
5. Apply the knowledge of electrochemistry to improve the efficiency of batteries. (PO-1, PO-2, PO-7)
FUNDAMENTALS OF COMPUTING AND C-PROGRAMMING LABORATORY

Course Code: CSL18/28
Credits: 0:1:1

Pre – requisites :Nil
Contact Hours: 14T+ 14P

Course Coordinator: Mrs. Meeradevi K

Course Content:

1. Basic LINUX Commands, Libreoffice Writer, Spreadsheets(Calc),Databases(Base)
2. C-Programming: Using Operators,
3. C-Programming: Using Conditional Statements
4. C-Programming: Using Switch Case and GOTO Statement
5. C-Programming: Using Iterative Statements
6. C- Programming: Using One Dimensional Arrays
7. C- Programming: Using Two Dimensional Arrays
8. C -Programming :Using Character array and Strings
9. C- Programming: Using Functions
10. C- Programming: Using Structures
11. C- Programming: Using Pointers
12. C- Programming: Using Files

Reference Books/Links:

5. https://www.libreoffice.org/get-help/documentation/

Course Outcomes (COs):

At the end of the course, the students will be able to:

1. Recall basic UNIX commands and prepare a Document, spreadsheet and Database using Libre Office. (PO-1, PO-2, PO-5)
2. Write C-programs using language constructs such as Operators, Conditional and Iterative Statements. (PO-1, PO-2, PO-5)
3. Write C-programs to implement concepts related to arrays, functions, Strings, structures, pointers and Files. (PO-1, PO-2, PO-5)

Note:

- The exercises based on the above topics will be formulated and discussed in the Tutorial Class.
- Each student will be given two manuals, one for the tutorial class (the student will write the solutions for the tutorial exercises) and one for the Laboratory (the student will write the executed program in the Lab class)
Course Content:

Unit-I

CAD Software: Learning the drawing commands such as point, line, arc, circle, ellipse, rectangle, polygons etc. Modify commands such as copy, move, mirror, rotate, pattern, scale etc. Dimensions, linear, aligned, radial, angular, etc.

Orthographic projections: Projection of points (I and III Quadrant), projection of lines.

Projection of Planes: Projection of Planes such as triangle, square, rectangle, pentagon, hexagon and circle.

Unit-II

Projection of Solids: Projection of Solids such as cube, prism, pyramid, cylinder, Cone and tetrahedron (No problems on freely suspended from corner and drawing profile view when three positions involved).

Unit-III

Isometric Projection: Isometric scale, isometric projection of simple solids & their frustums, combination of two solids (Co axial).

Text Books:

Reference Books:

Course Outcomes (COs):

At the end of the course, students will be able to:

1. Demonstrate the usage of a CAD software for creating engineering drawings: commands such as draw, copy, move, mirror, rotate, dimensioning. (PO-1, PO-5, PO-9, PO-10, PO-12)

2. Sketch and draw using the CAD software, the orthographic projections of the following with various conditions of position and orientation: points, lines, Planes and Solids. (PO-1, PO-5, PO-9, PO-10)

3. Sketch and draw using the CAD software Isometric projection of a combination of two coaxial solids. (PO-1, PO-5, PO-9, PO-10).
Course Content:

This course will provide an introduction to engineering design process. Students will work in a group of 4/5 to solve a problem of current concern requiring an engineering solution. They are required to follow a systematic approach towards developing the solution by considering technical and non-technical factors. The working model of the solution along with the design documentation will be considered for final evaluation.

References:

Course Outcomes (COs):

At the end of the course, the students will be able to:

1. Define the problem to be solved in a clear and unambiguous terms. (PO-1)
2. Identify and establish the need to solve the problem by gathering relevant literature. (PO-1)
3. Generate multiple solutions, analyze and select one solution. (PO-3, PO-4, PO-5)
4. Test and implement the solution as a team. (PO-9, PO-10)
5. Document and present the solution to the peer group. (PO-10, PO-12)